## A unitary and causal effective field theory based on the chiral Lagrangian

A. M. Gasparyan, M. F. M. Lutz

MENU 2010, Williamsburg

1. Juni 2010

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## Table of contents





2 Description of the method

#### Results 3

- $\pi N$  elastic scattering
- Pion photoproduction
- Proton Compton scattering

#### Summary 4

## Motivation

Strict ChPT has a limited range of convergence (threshold region).

(V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008))

- Phenomenological models: errors are not under control (no systematic expansion).
  (A. M. Gasparyan, et. al. Phys. Rev. C 68, 045207 (2003)
  V. Shklvar, et. al. Phys. Rev. C 71, 055206 (2005))
- Chiral "unitarized" approach: so far no explicit treatment of u and t-channel analyticity (needed when going to higher orders, or including coupled channels).
   (U.-G. Meissner and J. A. Oller, Nucl. Phys. A 673, 311 (2000)
   M.F.M. Lutz and E. E. Kolomeitsev, Nucl.Phys.A 700 193 (2002) ).

## Motivation

- Strict ChPT has a limited range of convergence (threshold region).
  - (V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008))
- Phenomenological models: errors are not under control (no systematic expansion).
  - ( A. M. Gasparyan, et. al. Phys. Rev. C 68, 045207 (2003)
  - V. Shklyar, et. al. Phys. Rev. C 71, 055206 (2005))
- Chiral "unitarized" approach: so far no explicit treatment of u and t-channel analyticity (needed when going to higher orders, or including coupled channels).
   (U.-G. Meissner and J. A. Oller, Nucl. Phys. A 673, 311 (2000)
   M.F.M. Lutz and E. E. Kolomeitsev, Nucl.Phys.A 700 193 (2002) ).

## Motivation

- Strict ChPT has a limited range of convergence (threshold region).
  - (V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008))
- Phenomenological models: errors are not under control (no systematic expansion).
   (A. M. Gasparyan, et. al. Phys. Rev. C 68, 045207 (2003)
  - V. Shklyar, et. al. Phys. Rev. C 71, 055206 (2005))
- Chiral "unitarized" approach: so far no explicit treatment of u and t-channel analyticity (needed when going to higher orders, or including coupled channels).
   (U.-G. Meissner and J. A. Oller, Nucl. Phys. A 673, 311 (2000)
   M.F.M. Lutz and E. E. Kolomeitsev, Nucl.Phys.A 700 193 (2002) ).

## Strategy

## • 2-channel approximation ( $\pi N$ and $\gamma N$ ) $\Longrightarrow$ one is limited by energies $\sqrt{s} \simeq 1300 {\rm MeV}$

- Low energy: tree level amplitude (*u* and *t*-channel cuts are taken into account) + one loop to chiral order *Q*<sup>3</sup>
- Use analyticity and unitarity to calculate the amplitude beyond threshold region.
- Fit free parameters to data.

## Strategy

- 2-channel approximation ( $\pi N$  and  $\gamma N$ ) $\Longrightarrow$  one is limited by energies  $\sqrt{s} \simeq 1300 {\rm MeV}$
- Low energy: tree level amplitude (u and t-channel cuts are taken into account) + one loop to chiral order  $Q^3$
- Use analyticity and unitarity to calculate the amplitude beyond threshold region.
- Fit free parameters to data.

## Strategy

- 2-channel approximation ( $\pi N$  and  $\gamma N$ ) $\Longrightarrow$  one is limited by energies  $\sqrt{s} \simeq 1300 {\rm MeV}$
- Low energy: tree level amplitude (*u* and *t*-channel cuts are taken into account) + one loop to chiral order Q<sup>3</sup>
- Use analyticity and unitarity to calculate the amplitude beyond threshold region.
- Fit free parameters to data.

## Strategy

- 2-channel approximation ( $\pi N$  and  $\gamma N$ ) $\Longrightarrow$  one is limited by energies  $\sqrt{s} \simeq 1300 {\rm MeV}$
- Low energy: tree level amplitude (*u* and *t*-channel cuts are taken into account) + one loop to chiral order Q<sup>3</sup>
- Use analyticity and unitarity to calculate the amplitude beyond threshold region.
- Fit free parameters to data.

- 日本 - 1 日本 - 日本 - 日本

### Partial Wave Dispersion Relation

### Unitarity and Analyticity:

$$T_{ab}(\sqrt{s}) = U_{ab}(\sqrt{s}) + \sum_{c,d} \int_{w_{\text{thrs}}}^{\infty} \frac{dw}{\pi} \frac{\sqrt{s} - \mu_M}{w - \mu_M} \frac{T_{ac}(w) \rho_{cd}(w) T_{db}^*(w)}{w - \sqrt{s} - i\epsilon}.$$

## $U(\sqrt{s})$ contains all the left hand cuts

 $\implies U(\sqrt{s})$  can be analitycally continued beyond threshold region (conformal mapping)

### Partial Wave Dispersion Relation

### Unitarity and Analyticity:

$$T_{ab}(\sqrt{s}) = U_{ab}(\sqrt{s}) + \sum_{c,d} \int_{w_{\text{thrs}}}^{\infty} \frac{dw}{\pi} \frac{\sqrt{s} - \mu_M}{w - \mu_M} \frac{T_{ac}(w) \rho_{cd}(w) T_{db}^*(w)}{w - \sqrt{s} - i\epsilon}.$$

## $U(\sqrt{s})$ contains all the left hand cuts

 $\implies$   $U(\sqrt{s})$  can be analitycally continued beyond threshold region (conformal mapping)

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

### Partial Wave Dispersion Relation

### Unitarity and Analyticity:

$$T_{ab}(\sqrt{s}) = U_{ab}(\sqrt{s}) + \sum_{c,d} \int_{w_{\text{thrs}}}^{\infty} \frac{dw}{\pi} \frac{\sqrt{s} - \mu_M}{w - \mu_M} \frac{T_{ac}(w) \rho_{cd}(w) T_{db}^*(w)}{w - \sqrt{s} - i\epsilon}.$$

## $U(\sqrt{s})$ contains all the left hand cuts

 $\Longrightarrow U(\sqrt{s})$  can be analitycally continued beyond threshold region (conformal mapping)

## Example of conformal mapping for $U = \log W(W = \sqrt{s})$

### W



 $\xi(W) = \frac{1-\sqrt{W}}{1+\sqrt{W}}$  maps the interior of  $C_1$  onto a unit circle.  $\xi(\mu_E) = 0.$ 

## Example of conformal mapping for $U = \log W(W = \sqrt{s})$



 $\xi(W) = \frac{1-\sqrt{W}}{1+\sqrt{W}}$  maps the interior of  $C_1$  onto a unit circle.  $\xi(\mu_E) = 0.$ 

#### $\pi N$ elastic scattering

## $\pi N$ phase shifts (S and P waves)



#### $\pi N$ elastic scattering

## $\pi N$ phase shifts (S and P waves)



#### $\pi N$ elastic scattering

## $\pi N$ phase shifts (S and P waves)



| Motivation           | Description of the method | Results<br>○●000000000 | Summary |
|----------------------|---------------------------|------------------------|---------|
| Pion photoproduction |                           |                        |         |
| Pion photo           | production                |                        |         |

s- and p-waves multipoles are well described up to  $\sqrt{s} = 1300$  MeV (at order  $Q^3$ ).

Threshold data are not included in the fit! (Isospin symmetric case)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Pion photoproduction

## Threshold *s*-wave multipoles

|                                                  | Present work | $\chi$ PT ( $Q^4$ ) | Experiment                |
|--------------------------------------------------|--------------|---------------------|---------------------------|
| $E_{0+} (\pi^+ n) [10^{-3}/m_{\pi^+}]$           | 27.4         | 28.2                | $28.06 \pm 0.27 \pm 0.45$ |
| $E_{0+} (\pi^- p) [10^{-3}/m_{\pi^+}]$           | -31.5        | -32.7               | $-31.5\pm0.8$             |
| $E_{(\pi^0,\pi)}[10^{-3}/m]$                     | -1.12        | -1.16               | $-1.32 \pm 0.05 \pm 0.06$ |
| $E_{0+}$ ( $\pi^{+} p$ ) [10 * / $m_{\pi^{+}}$ ] |              |                     | $-1.23 \pm 0.08 \pm 0.03$ |

Results ○00●0000000

(ロ)、(型)、(E)、(E)、 E) の(の)

Pion photoproduction

## Threshold *p*-wave multipoles

|                                             | Present work | χΡΤ ( <i>Q</i> <sup>3</sup> ) | Experiment                |
|---------------------------------------------|--------------|-------------------------------|---------------------------|
| $\bar{P}_1 (\pi^0 p) [10^{-3}/m_{\pi^+}^2]$ | 10.2         | 9.4                           | $9.46 \pm 0.05 \pm 0.28$  |
| $\bar{P}_2 (\pi^0 p) [10^{-3}/m_{\pi^+}^2]$ | -10.7        | -10.0                         | $-9.5 \pm 0.09 \pm 0.28$  |
| $\bar{P}_3 (\pi^0 p) [10^{-3}/m_{\pi^+}^2]$ | 10.3         | 10.6                          | $11.32 \pm 0.11 \pm 0.34$ |

#### Pion photoproduction

## Near threshold differential cross section for the reaction $\gamma p \rightarrow \pi^0 p$ (MAMI 2001)



◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Pion photoproduction

## Energy dependence of the p-wave amplitudes in neutral pion photoproduction (SAS 1996)



Pion photoproduction

## Threshold ( $E_{\gamma} = 159.5 \text{ MeV}$ ) photon asymmetry in neutral pion photoproduction (MAMI 2001)



#### Pion photoproduction

## Energy dependence of the photon asymmetry in neutral pion photoproduction



Results ○○○○○○○●○○

#### Proton Compton scattering



Results ○○○○○○○●○○

#### Proton Compton scattering



Results ○○○○○○○●○○

#### Proton Compton scattering



Results ○○○○○○○○○

#### Proton Compton scattering



Proton Compton scattering

## Beam asymmetry for Compton scattering off the proton



▲ロト ▲圖ト ▲ヨト ▲ヨト 三回 - のへで

## Summary

- An application of *SU*(2) chiral Lagrangian to the order *Q*<sup>3</sup> is developed.
- Causality and unitarity constraints are utilized to obtain the  $\pi N$ ,  $\gamma N \rightarrow \pi N$  and  $\gamma N \rightarrow \gamma N$  amplitudes beyond the threshold region.
- With a small number of parameters a good description of  $\pi N$  phase shifts and photoproduction multipoles up to  $\sqrt{s} = 1300$  MeV is achieved. Differential cross section and polarization observables for the reactions  $\gamma N \rightarrow \pi N$  and  $\gamma N \rightarrow \gamma N$  are also well reproduced.
- Threshold physics is under control. (Parameters are not adjusted to it.)
- To extend the energy region of applicability of the method one needs to include further channels (in progress).